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PREFACE 

The work  described  in  this  document  was  performed by  Goodyear 
Aerospace  Corporation,  Akron, Ohio under NASA Contract NAS1- 
8010, Supersonic  Decelerator Wake Studies.  Results of these  studies 
are presented  in two volumes: 

Volume I - Theoretical  Analysis and Correlation of 
Wind Tunnel and Shallow-Water Tow 
Channel  Results (NASA CR-1543) 

Volume I1 - Application of Gas Hydraulic  Analogy to 
Shallow-  Water  Tow-Channel  Results 

Contractor's  number  for  this  report is GER-14330. 
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SUMMARY 

Tow channel  tests als'b were-conducted  on a wide  variety of k-o-dimensional - 
configurations. 

The results of this  investigation  tend  to  support  the  use of the tow channel as 
a means of qualitatively  studying  two-dimensional  compressible  flows  and 
indicate  that  certain  quantitative  aspects of these flows are accurately  pre- 
dicted  by tow channel  data. 
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SECTION I1 - APPLICATION O F  THE  WATER-GAS ANALOGY 

1. Gas -Hydraulic  Analogy 

- a. Previous  Studies 

The mathematical  relationships  existing  between a flow of water  having 
a free  surface  and a two-dimensional  compressible  gas  are  set  forth  in 
the gas-hydraulic  analogy.  Probably  the  most  notable  work  on  this 
analogy is that of Preiswerkl ,  a who, i n  1938, provided  conclusive  proof 
that the methods of gas  -dynamics  can be applied to a water flow. Since 
that  time,  several  other  studies (f-.g. References 2 through 5)  of the 
gas  -hydraulic  analogy  and its app  Icahons  have  been  made. 

A derivation of the basic  relationships,  based  primarily  on the mathe- 
matical  developments  presented  in  References 1 through 5, is provided 
i n  Appendix A. 

- b. Results 

The basic  assumptions  employed  in  the  development of the gas  -hydraulic 
analogy are: 

1. Frictionless  and  adiabatic flow 

2. Irrotational flow 

3 .  Negligible vertical  accelerations  compared  with 
gravity 

The major  limitations  imposed by its derivation  are: 

1. Strictly  analogous  only  to y = 2 gas 

2. Representative of two-dimensional flow 

3 .  Restricted to shallow  water  (depths, d e  wave- 
length, X ) 

4. Change in   internal   energy  across  a shock  wave  not 
equivalent  between  water  and  gas 

Tables I and II summarize the  mathematically  derived  relationships  and 
the  analogous  terms  and  conditions  between a flow of water  and a two- 
dimensional  gas flow. F rom the  assumptions  and  limitations  data, it is 
apparent  that  the  analogy is completely  valid  only  when the analogous  gas 
is two-dimensional,  irrotational,  and  isentropic  and  has a specific  heat 
ratio of 2 (see Appendix A). These  characteristics are not all fulfilled 
by  any  real  gas  and are used to describe the hypothetical  "hydraulic  gas. It 

'Superior numbers  in the text refer to i t ems   i n  the List of References. 
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TABLE I - ANALOGOUS RELATIONS, GAS-HYDRAULIC ANALW; Y 

Compressible fluid. 

Two -dimensional  gas flow 

y = 2 gas 

Velocity, - V 
Vmax 

Pressure ,  
PO 

Density, - P 

PO 

Temperature, - T 
T O  

sonic  velocity, a = ,/= 
Mach  number, M = - V 

a 

Water 

Flow of liquid  with free surface in  
gravity  field 

Incompressible  fluid  (water) 
" 

Velocity, 
V 

max (e) 2 

Depth, - d 

Depth, - d 

Surface  wave  propagation  velocity, 

C = Jgd 

Froude  number, Fr = - V 

6- 

TABLE I1 - ANALOGOUS TERMS AND  CONDITIONS, 

GAS-HYDRAULIC  ANALOGY 

Compressible  fluid 

Subs oni  c flow 

Supersonic  flow 

Normal  shock  wave 

Oblique  shock  wave 

Flow  expansion 

Flow  compression 

Expansion  wave 

Wave pulsation 

Water 

Streaming  flow 

Shooting  flow 

Right  hydraulic  jump 

Slant  hydraulic  jump 

Level  drop 

Level rise 

Depression  wave 

Hydraulic  jump  oscillation . 
4 



2. 

a. - 

b. - 

C. - 

- 

I 

EXPERIMENTAL CONSIDERATIONS 

Water Depth 

In this test program, a nominal  water  depth of 0. 19 in. was  used.  This 
value  was  selected  based  upon  the  results of Reference 3 (see Appendix A, 
Item 2). In  Item 2, it is shown  that,  for  water  depths of about 0.2 in. , 
the  surface  wave  propagation  velocity, c, is equal to w a n d ,  thus, is 
analogous  to  the  sonic  velocity, a, i n  a compressible gas. For  other 
depths, c is a function of the  wavelength, X , for  which  there is no counter- 
pa r t   i n  the analogy,  Gupta6 has shown,  theoretically,  that  the  optimum 
water  depth is 0. 19 in. 

Model Size 

Because  wavelength, X ,  is a direct  function of the  model  size, it gener- 
ally is desirable  to  use  large  models  and,  thus,  reduce  the  effect of cap- 
illary  ripples (X L 1  in. ). As a practical  matter,  the  model  size  generally 
is limited to the size of the available tow channel (or flow  channel)  and to 
the  geometry of the  model  being  tested.  In  this  program,  for  example it 
was  found  that  4-in.  wide  blunt  models  represented a practical   l imit   in a 
4-ft-wide tow channel. When larger models  were  tested,  wall  effects 
were  typically  experienced,  particularly at lower  free-stream  Froude 
number, Frm, va'lues. In these cases, the bow hydraulic  jump  was re- 
flected  from  the  wall  in  such a manner  that the incident  and  reflected 
wave  formed a triple  intersection  point at 0 (see sketch  below) 

S L I P S T R E A M  

0""- 

-00 ___t 
Fr> 1 

The intersection  point, 0, then  would  propagate  upstream  until  the bow 
wave  was  completely  normal to the  direction of the  free-stream flow. 

Tow Channel  Versus Wate,r Flow  Channel 

All  tests  were  conducted  in a tow channel - that is, a channel  in  which 
the  model is moved  through still water. The major  advantage of a tow 
channel  over a flow channel  (one  in  which a flow of water is passed  around 
a still model) is that no velocity  gradients are produced  from  the  channel 
floor or walls.  This is of particular  importance  since a shallow  depth 
(0.2 in. ) should  be  used to obtain  the  proper  analogy.  A  problem  with 
tow channels is the  difficulty  generally  experienced  in  obtaining  accurate 
depth  measurement  in  the  water flow.  In  this  program,  these  measure- 
ments  were  obtained  using a camera  system  that  provided a three - 
dimensional stereo model of the t e s t  configurationand  surrounding flow. 
This  camera  system is discussed  in  greater  detail  later. 

5 



3. ANALOGY DEVELOPMENT AND MODIFICATIONS I 

The gas-hydraulic  analogy, as summarized  in  Item 1, above, is strictly 
valid  only  when the isentropic  flow of a hypothetical,  compressible, two- 
dimensional  gas (y = 2)  is  considered. When simulating  supersonic  air- 
flow through a shock  wave,  the  analogy is  imperfect  for two basic  reasons: 
(1) y = 1.4 for   a i r  while  the  analogy  requires y = 2 and (2)  the  analogy 
requires  that the  change in  entropy As = 0 across  the shock, a condition 
not fulfilled  by  any  real  gas. 

Under certain  simulation  conditions , however , these b o  imperfections 
actually  tend to compensate  for  one  another  across a hydraulic  jump. 
Harleman,  for  example,  used a slender  cone ( 6 = 9 deg)  in a water  flow 
to show  that  the  properties  downstream of an  attached  two-dimensional 
air   shock wave from a corresponding body could  be  obtained  with good 
accuracy  using the "first  modification of the direct  analogy. 'I Basically, 
this  method  relies upon obtaining  the  static  density  ratio  across a shock 
from the static  depth  value  across a hydraulic  jump  and  then  computing 
other  gas  properties  from  conventional  gas  dynamic  relationships.  The 
depth  ratio  was  used to predict  density  ratios  because the best  correlation 
was found to  exist  between  these two parameters  (see  Figure  1).  At 
Mach 3 ,  the relative  error  using  the  depth  ratio  to  predict the density 
ratio  is about 2 percent;  at Mach 9, the e r ro r   i s  about 8 percent. 

3.0 

2.5 

2.0 

I .5 

1 .o 
1 2 3 4 5 6 7 8 9 

MACH  NUMBER O R  F R O U D E   N U M B E R ,   M ,  OR Fr, 

Figure 1 - Theoretical  Correlation  Between  Water and Air  Charac- 
terist ics  Across  an Oblique Bow Wave ( 6  = 9 Deg) 
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ft is shown i n  Volume I, however,  that the first  modification  approach is 
approximately  valid  only  when  small  deflection  angles'are  considered. 
This primarily  results  from the small deflection  angles  producing  attached 
bow waves  that are nearly  independent of y. 

For  larger  deflection  angles  with  curved  and,  possibly,  detached bow 
waves,  the first modification  method is no longer  conceptually  applicable. 
F i r s t ,  the wave  shape  can no longer  be  considered as independent of y; 
therefore,  the  wave  shape  in  water  theoretically is no longer similar to 
that  in  two-dimensional  compressible air. Second,  the  airflow  behind a 
curved  shock is  highly  rotational  due  to  the  entropy  gradients  produced, 
and  water  results are not applicable  to  this  type of flow. Because it may 
be possible  experimentally  to  achieve  situations  where  reasonable  agree- 
ment is obtained  between water hydraulic  jump  and  two-dimensional air 
shock  waves,  the  quantitative  application of water flow to compressible 
gas flow must be  considered  for  these  cases.  Babish8  has  presented  the 
necessary  relationships t o  describe  theoretically  the  physical  change  in 
water  passing  through a hydraulic  jump. 

Equations  for the normal  hydraulic  jump are: 

1 - 
d2 2 l 2  1 - =  (2Fr + 3) - - 
dl 2 '  

Equations  for a slant  hydraulic  jump  are given  below. 

1 ~ - 
2Fr21sin 2 0 +:- - t .  

'* L 

dl 

. ($1 + (%) + 4  

7 



whe re 

Fr = Froude  number; 

6 =  t a n  - 1  6 =  t a n  - 1  

When the  results of Equation (4), for  example, are compared with  the 
density  ratio  across a shock as predicted by the  gas-dynamic  relationship, 

p2 (y t 1)  M12sin 2 0 
- =  
’1 (y - 1) M~ sin2 e + 2 ’ 2 

reasonable  agreement is found to exist  within a range of Mach  (Froude) 
sin 0 values  between 1 and 4. This is shown in Figure 2, where,  within 
this  range,  an  error of about  10  percent  or  less is incurred  for air. Fo r  
y = 2 gas,  the  error  becomes  prohibitively  large  at  relatively low  values . 
of M sin 8. It should  be  noted  that  the  results of Figure 2 actually  con- 
s t i t u g  a part of the  justification of the first modification  approach. 
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Figure 2 - Static  Depth  and  Density  Ratios  Across  Oblique Wave as 
Function of Upstream  Mach  (Froude)  Number 





SECTION III - TEST  FACILITY 

1. TOW CHANNEL AND INSTRUMENTATION 

Pertinent  dimensions  and  characteristics of the  shallow  water tow channel 
at Wright-Patterson Air  Force  Base  are: 

1. Length - 45 ft 

2 .  Width - 4 f t  

3 .  Usable  run  length  to  test  section - 2 6 . 3  f t  

4. Side  and  end  wall  construction - metal 

5. Bottom  surface  construction - four  clear  glass 
plates  placed  end to end,  each 0. 5 inches  thick 

6. Bottom  surface  support - 163 movable  jack  pads 
that can be adjusted  to  maintain the bottom  surface 
level  within 0 .005  in. in a 4-ft  by  4-ft  area 

The model  was  transported  by a movable tow carriage  that  spanned  the 
width of the  channel  and  rode  on a ser ies  of wheels  supported  by  the  struc- 
ture on each  side. 

An instrumented  console  was  electronically  connected  to  the tow carr iage 
for  supplying  the  power  input  to  move  the  carriage at a controlled  ve- 
locity.  The  carriage  velocity  can  be  controlled  to  give a Froude  number 
range  (based on a water  depth of 0. 19 in. ) of about 0 to 8 (a t  a water  depth 
of 0.19  in., a carriage  velocity of 0 .714 fps  corresponds  to a Froude 
number  value of 1). The  desired  test  Froude  number  value  was  selected 
using a calibrated  dial  prior  to  the  test  run. . An approximate  in-test 
Froude  number  value  can  be  read  from a "Machometer"  located  on  the 
console. An accurate  determination of the  actual  Froude  number  through 
the  test  section  also  can be obtained  immediately  following  each  test  from 
an output trace on light-sensitive  paper by a Honeywell  Model 1408 visi- 
corder.  An electroriic  signal is sent to the  visicorder  at  2-in.  intervals 
all along  the tow channel  length.  These  signals  are  recorded as discrete 
pulses on  the  otherwise  straight  output  trace.  Timing  lines  also are re- 
corded at a preset  rate  to  enable  the  pulse  frequency  to  be  used  to  deter- 
mine  the  carriage  velocity. 

2. PHOTOGRAPHIC EQUIPMENT 

- a. Sequence  Still Camera 

Still  photographs  were  taken of the test  model  and  surrounding  flow  field 
at the  test  section  using a single camera equipped  with a 35-mm  wide- 
angle  lens. The camera  was  attached  to  the  movable tow carriage  above 
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the test  model (see Figure 3).  The camera  moved  with the carriage  and 
was  tripped  automatically  at the test  section to photograph  the  desired 
test results. With each  test  run  and  return of the carriage,  the  film  in 
the camera  automatically  was  advanced one frame,  which  made i t   ready 
immediately  for  another  test. A counter  also  was  electronically  con- 
nected  to  the  camera so that  each  test  run  and  return of the carriage 
automatically  upgraded the  preceding  number  by  one  integer.  Thus,  an 
accurate  count of the tests conducted was maintained. 

Lighting for  this type of photography  was  provided  by two 500-w  flood 
lamps,  with one  located  on  each  side of the tow channel  about  one  foot 
f rom the side  walls an.d about two inches  above  the  water  surface. The 
light  from  each  source  passed  through  the  water  and glass bottom  sur- 
face  and  was  reflected.  back by a painted  surface  that  ran the entire  length 
of the tow channel  beneath  the  glass  plates.  This  oblique  lighting  produced 
a camera  field of view that  contained both highly  illunlinated  and  shadowed 
areas  highlighting  the  wave  patterns. The result  was a two-dimensional 
picture  similar  in  appearance  to  wind-tunnel  schlieren photo-graphs (see 
Appendix B). 

This  method of photog:raphy  provided an   easy  and fast  means of obtaining 
flow geometry  data. By measuring  attached bow wave  angles  or  wave 
detachment  distances , for  example, the effects of changes  in  free-stream 
Froude  number  and body geometry  also could be determined.  Thus,  this 
type of photography i s  useful for  obtaining  geometrical  characteristics 
and  determining  data  trends. 

- b. Stereophotogrammetric  Camera/Projector  Equipment 

To study  the  quantitative  aspects of the water-gas  analogy,  it  was  nec- 
e s sa ry  to  have  available a method  by  which  water  depth  data  could be 
obtained. Such a method  was  provided  by  the  stereo  camera/projector. 

In  this  method, two cameras  were  located on  the movable tow carriage 
above  the test  model  and  were  slightly off center of its  centerline  (see 
Figure 4). At  the test  section,  each  camera  automatically  and  simultane- 
ously  photographed the test  model  and  surrounding flow field, which pro- 
duced two latent  images of the same  format  area.  These  two-dimensional 
images  were  formed on  photographically  treated  glass  plates.  After 
processing, the glass  plates  were  inserted  back  into the cameras  which, 
when  used  together as a projector  system,  produced  an  analogic,  three- 
dimensional  stereo  model  from the processed  images. 

From  this  stereo  model, a water  depth  contour  map  was  constructed (see 
Section V). This  was  accomplished  using  the  camera/projector by passing 
a red  light  through  the  right  stereo  plate  and a blue  light  through  the  left 
plate  to  form a common  view area  on a small  circular  tracing  table. 
Special  glasses  (having a red  lens  and a blue lens)  also  were  used. The 
tracing  table  was  raised  or  lowered  until a small  pinpoint  light  source  in 
the tracing  table  appeared  to  lie on a point  on  the  water  surface.  Physi- 
cally,  this  point  and  its  height  are  defined  when  the  same  point  in both 
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T SEQUENCE STILL C A M E R A  

Figure 3 - Sequence Still Photographic  Technique 



Figure 4 - Stereophotogrammetric  Technique 
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images  coincides. When this  was  achieved, the tracing  table  was  moved 
to  connect  all  adjacent  points at the same height.  This  process  then  was 
repeated  at  various  height  levels  until a complete  contour  map  was 
formed. 

Lighting for  the stereo  system  was  provided  by  an  electronic  strobe  flash. 
Two units  that  flash  simultaneously  were  used.  These  units  were  located 
on  each  side of the movable tow carriage  about 18 in.  above  the  water 
surface. 

A s  a  practical  matter, it was  necessary to use  some  material  that  facili- 
tated  the  definition of the water  surface  during  the  reduction  process. 
In  this  program,  eccospheres  (small  white  hollow  spheres  approximately 
six  microns  in  diameter)  were  used. The particles  floating  on  the  water 
surface  enabled its definition. 

A small  metal  block  exactly 0. 5 in. in  height also was  placed  in the tes t  
section  for the stereo  tests.  This  block  provided  a  reference  height  from 
which  the  water  depths  could  be  determined. 
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- SECTION IV - SUMMARY O F  TEST RUNS  AND CONDITIONS 

1. DESCFUPTION OF TEST MODELS 

The 58 two-dimensional  body  shapes  used  in  the  tow-channel  test  program 
are  described  in  Table III. Although  these  models  are  representative of 
a wide variety of different  geometrical  shapes, it can  be  seen from Table 
Iu. that they  can  be  classified  into 10 basic  categories.  Consequently, 
these  models  permitted  the  evaluation of the  effects of individual  geometric 
parameters. 

2. SUMMARY O F  TESTS 

Tests  performed  and  test  conditions  are  summarized  in  Tables IV  and V. 
In  each  table, the tests  are  classified  according to the type of trailing 
body  used  or as single body tests.  The  analytical  wedge and the analytical 
blunt  body  listed  under  -the  heading  "Trailing Body" a r e  a 10-deg-apex 
wedge anda  reversed  (backward-facing) half cylinder,  respectively.  These 
bodies  were  used  as  analytical  aids  in  predicting  wake  Froude  number 
profiles  (see  Section 11, Volume I). As  indicated  by  Tables IV and.V, 
photographic  data  on  selected  two-body  combinations  also  were  obtained. 

3.  EXPERIMENTAL  PROCEDURE 

Sequence still data  was  obtained  using  the  following  basic  procedure: 

1. 

2. 

3 .  

4. 

5. 

Film was  loaded in   camera and camera was  placed 
in  position  on  movable tow carriage. (Once this  was 
accomplished,  up to 700 tests could  be  conducted 
without  removal of the  camera). 

Models  were  located and attached to the tow carriage. 

Water  depth was checked  and  water  was  added as r e -  
quired.  (Static  water  depth  was  obtained to within 
0.003 inches  with  the  use of a vernier  micrometer 
depth  gage).  Depth  readings  generally  were  not 
required  prior to each  run. 

Carriage  velocity  control  was s e t  for  the  desired 
velocity. 

Carriage  motion  was  activated. 

For  stereo photography  the  basic  procedures  was as follows: 

1. Photographic  glass  plates  were  placed  into two 
special  plate  holders,  which  then  were  inserted 
into  the two cameras.  
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2 .  

3. 

4. 

5. 

6.  

7. 

8. 

Models  were  located  and  attached t o  the  tow 
carriage.  

Water surface  definition  material  was  dispensed as 
required and reference  gage  block  was  positioned. 

Static  water  depth  was  checked and water  was  added 
as required  (the  same  method  used  for  sequence 
still photography  was  used  for  the  stereo  photogra- 
phy. The stereo  results  themselves,  however, 
provided a second  check. ) 

Shutters  (spring  loaded) on each  stereo  camera 
were  cocked so  that  the  shutters would open at the 
test  section. 

The carriage  velocity  control  was  set  for  the  de- 
sired ve1,ocity. 

Carriage  motion  was  activated. 

At the  conclusion of each  test,  the  plate  holders 
were  removed  from  each camera and  the  exposed 
glass  plates  were  removed  from  the  plate  holders. 

In  general,  time  required to  conduct a single  stereo  test  was  an  order of 
magnitude  higher  than  the  time  required t o  conduct a single  sequence 
still test. 



TABLE 111 - TEST CONFIGURATIONS 

Classification 

Circular  cylinder 
~ ~~ 

Half cylinder arrr. 
Sharp wedge 

Biunted  wedge 
(80- and 120-deg apex  angle) 

Wedge-block 

\I 
2.00 

Ogive-block 

rDimensions  in  inches, 

Number of 
configurations 

3 

2 

17 

13 

1 

1 

2 

3 

Design variables * 
~ ~~~~ 

D = 1, 2, and 4 

D = 2 and 4 

D = 1 ; 2 6 =  10 
D = 2;  2 6 = 15,  20,  30,  60, 80, 100, and 110 
D = 4, 26 = 30, 40,  45,  50,  55, and 60 

D = 2, 2 6 = 120, rs/R = 0.40, rn/R = .0.25 
D = 2, 2 6  = 120, r,/R = 0.20, rn/R = 0.25 
D = 2, 2 6 = 120, rs/R = 0.00, rn/R = 0.25 

D = 4, 2 6 = 80 and 120, rs/R = 0.05, rn/R = 0.25 
D = 4, 2 6 = 80 and 120, rs/R = 0.00, rn/R = 0.25 

D = 4, 2 6 = 80 and 120, rs/R = 0.10, rn/R = 0.25 
D = 4, 2 6 = 80 and 120, r,/R = 0.20, rn/R = 0.25 
D = 4, 2 6 = 80 and 120, r,/R = 0.30, rn/R = 0.25 

6 = 12.66, 

6 = 12.66 

5 6 = 30 and 60 

angles  in  degrees. 
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TABLE I11 - TEST CONFIGURATIONS (Continued) 

Classification 

Parabolic  nose-block 

Half cylinder-block 

3 

Half cylinder-block-flare 

Blunted  wedge-block-flare 

Number of 
configurations 

" 

Design  variables* 

Ab = 2.0,  4.0, 6.0, a n d 8 . 0  

€If = 15, 20, 30, 45, and 60 

. . .  
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TABLE IV - TOW  CHANNEL TEST SUMMARY 

(SEQUENCE STILL PHOTOGRAPHIC  TECHNIQUES) 

Forebody 
class  

Forebody 
diameter 

(in. ) 

Circular  cylinder 

Half cylinder 

Blunted 80- and 
120-deg  wedges 

Wedge-block 

Ogive-block 

Parabolic  nose-block 

Half cylinder-block 

Blunted  wedge-block- 
flare 

Trailing  body 
* 

None 
Analtyical  blunt  body 
Analytical  wedge 
Others 

None 

Analytical  blunt  body 
Analytical  wedge 
Others 

None 
Analytical  blunt  body 
Analytical  wedge 
Others 

None 
Analytical  blunt  body 
Analytical  wedge 
Others 

None 
Analytical  blunt  body 
Analytical  wedge 
Others 

None 

None 

Analytical  blunt  body 
Analytical  wedge 

Others 

None 
Analytical  blunt  body 
Analytical  wedge 
Others 

None 
Analytical  blunt  body 
Analtyical  wedge 

I 

Note: Froude  number  range:  1.5  to  2.5. 

Separation 
distance 

range, x/D 

NA+ 

4,  5 

NA 

4  to IO. 5 
4  to  10.  5 
6 to 10 

. . .  
1 . .  

NA 
4 to 12.5 
4  to  12.5 
6 to 10 

NA 
4  to  12.5 
2 to 12.5 
4  to  10 

NA 
2 to 19 
4  to  12 
4  to  10 

NA 

NA 

6 to 10 
6.5 to 12.  5 

4 to 6 

NA 
4  to  6.25 
3 t o  5 
4,  6 

NA 
9.6 to  16.4 
6 to 12 

Numb e r 
of 

tes ts  

21 
0 

11 
0 

27* 

L O  
3 

20 

42 
28 
20 
39 

611 
74 
48 

165 

3 
45 
65 

159 

3 s  

3 

9 
12 

18 

9 
18 
31 
I 9  

6 
9 
9 

P r i m a r y  
t e s t  

pur pos e 

Flow  geometry 

Wake survey 
. . .  
. . .  
wave standoff 
Flow geometry, 

Wake survey 
Wake survey 
Two-body  flow 
geometry 

Flow  geometry 
Wake survey 
Wake survey 
Two-body  flow 
geometry 

Flow  geometry 
Wake survey 
Wake survey 

geometry 

Flow  geometry 
Wake survey 
Wake survey 

geometry 

Flow  geometry 

Flow  geometry 
Wake survey 
Flow  geometry, 
wake  survey 
Two-body  flow 
geometry 

Flow  geometry 
Wake survey 
Wake survey 
Two-body  flow 
geometry 

Flow  geometry 
Wake survey 
Wake survey 

Two-body  flow 

Two-body  flow 

* 
Analytical  blunt  body = reversed  half  cylinder; analytical wedge = 10-deg  wedge;  others = circular  
cylinder,  half  cylinder,  sharp  wedges,  blunted  80-deg  wedges. 

'Not applicable. 

'Includes three tests of reversed half cylinder. 

'Includes 27 tests with  forebody at angles of attack 5, 15,  and  25  deg. 
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TABLE V - TOW-CHANNEL  TEST SUMMARY (STEREO  PHOTOGRAPHIC  TECHNIQUES) 

Forebody 
classification 

Circular  cylinder 

Half  cylinder 

Sharp  wedge 

Blunted  80-  and 
120-deg  wedget. 

N 
N 

Wedge-blocks 

Blunted  wedge- 
block-flare 

I 

Forebody 
diameter  

(in. ) Trailing  body 
~~~ 

None 
Others* 

None 
Sharp  wedge 

None 
Analytical  wedge 
None 
Analytical  blunt 
body 
Analytical  wedge 
Others  

None 
Analytical  blunt 
body 
Analtyical  wedge 
Other 

None 
Analytical  blunt 
body 
Analytical  wedge 

F r e e s t r e a m  
Froude  number,  

Frco 

1 .5 ,   2 .0 ,   2 .5  
2 .0  

1.5, 2 .0 ,  2. 5 

1.5,  2 .0 ,  2 .5  
1 .5 ,  2 .0 ,  2 . 5  
1 .5 ,  2 . 0 ,  2. 5 
1. 5, 2.0 to 2. 5 

1 .5 ,  2.0,  2 .5  
1 .5 ,  2.0, 2 . 5  

1 .5 ,   2 .0 ,  2. 5 
1.5, 2 . 0 ,  2. 5 

1 .5 ,  2 . 0 ,  2. 5 
2 . 0  

1 .5 ,   2 .0 ,   2 .5  
1 .5 ,  2 . 0  to 2 . 5  

1 .5 ,  2 . 0 ,  2 . 5  

Separation 
distance 

range, x/D 

NA+ 
6 to 10 

NA 
6 t o  10 

NA 
6 t o  10 
NA 
4 to 17 

3 to 10  
4 to 10 

NA 
4 to  17 

3 to 8 
4 to  10 

NA 
6 .6  to 1 6 . 4  

4 to 10 

Primary 
test 

purpose 

Flow  investigation 

analysis 
Flow  investigation 

analysis 
Flow  investigation 
Wake  profiles 
Flow  investigation 
Wake  profiles 

Wake  profiles 
Two-body  flow 
analysis 
Flow  analysis 
Wake  profiles 

Wake  profiles 
Two-body  flow 
analysis 
Flow  investigation 
Wake  profiles 

Wake profiles 

analysis 

Two-body  flow 

Two-body  flow 

Two-body  flow I >: 

Analytical  blunt  body = reversed  half cylinder;  analytical  wedge = 10-deg  wedge;  others = c i rcu-  
lar cylinder, half cylinder,  sharp  wedges,  and  blunted  80-deg  wedge. 

Not  applicable. t 

*Tests  performed  included 32 tests with  120-deg  wedge at angles of attack 5, 15,  and  25  deg. 

!Tests performed  include 39 tests with  wedge-block at angles of attack 5, 15, and  25  deg. 
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. SECTION V - RESULTS 

1. SEQUENCE STILL DATA 

- a. Data Trends 

Pertinent  tow-channel  data  trends  and  results  are  presented  in  Fig- 
u re s  5 through 12 as a function  primarily of free  stream  Froude  num- 
ber ,  Fr It can  be  seen  that,  in  general,  with  an  increase  in  free 
stream  Pioude  number: 

1. Bow wave  standoff  parameter, S/D, decreases 

2. Approximate  wake  neck  location, xo/D, increases 

3. Trailing  wake  divergence  half  angle, E , (similar 
to the  recompression  shock half angle  in a gas), 
decreases.  

These  trends  are similar to those that would be  expected  from  applicable 
theoryor  wind-tunnel  results.  Other  independent  parameters  that  produce 
more  or  less  expected  trends  for  specific  models  include  deflection  angle 
(wedge apex  half  angle), flare angle,  wedge  shoulder,  radius,  flare  size, 
and  nose  geometry.  At  constant  Mach  number,  for  example,  an  increase 
in  apex  angle  causes a general  increase  in S/D and xo/D  (Figure 6). This 
trend  is  quite  pronounced f o r  these  parameters  as would be  expected  due 
to the  increased  bluntness. It is less  pronounced,  although still apparent, 
for E where  the  higher  deflection  angle  causes a reduced  Mach  number 
flow  along  the  sides  and  thus  promotes a larger flow  turning  angle as the 
flow leaves  the  wedge. 

The  flare  angle  and  flare  length  both  show  comparatively  minor  effects 
except  in  some  isolated  cases  (see  Figures 10  and 11). These  resul ts   are  
generally as expected and consistent  with  other  applicable  trends.  Shoulder 
radius  effects  are  almost  nonexistant  forward of the  body as might  be 
expected,  but  are  somewhat  more  pronounced on those  parameters  mea- 
sured aft of the  body;  particularly xo/D (Figure 7). The  trend  here  again, 
however, is predictable  ,since  smaller xo/D values  might  be  associated 
with  larger  shoulder  radius.  Finally,  the  nose  shape  effects  (see  Fig- 
ures  8 and  12) are  generally  as  expected. 

Some  interesting  aspects of this  data  can be observed  from  Figures 5, 6, 
and 10. From  Figure 6, it can be seen  that  at Fr, = 1.5 and 6 - 25  de&, 
,a pronounced  difference in S/D is obtained fo r  the two model  sizes  shown. 
This  is  attributed to wall  effects,  which  influenced  both  the  shape  and  lo- 
cation of the bow wave for  the  larger  model. At Fr = 1.5,  Figure 1 0  
shows a comparatively  large  increase  in S/D.  The %are  length  (and  thus 
the  diameter)  increases.  This  possibly  results  from  the  flare  size  be- 
coming  the  dominant  factor  influencing  the  location  and  shape of the bow 
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wave,  although,  again,  wall  effects  may  be  influencing  the  data.  Finally, 
both  Figures 5  an.d 6 show a model  size  effect on xo/D-. This is somewhat 
contrary to what  would  be  expected  in a gas flow  and results  from  the  ten- 
dency of the  water flow to follow  the  contours of a body even  around  sharp 
base  corners.  The low actual  boundary-layer  velocities and surface  ten- 
sion  in  the  water are  considered to be  the  reason  for  this  tendency.  Per- 
centagewise,  the  smaller  models are the  most  affected  with  separation 
occurring  near  and  at  the  base  centerline.  Consequently,  the xo/D values 
for  the  larger  models  are  considered to be  more  indicative of two-dimen- 
sional  gas flow results. 

Angle-of-Attack  Effects on the  Hydraulic  Jump 

Data  presented  in  Section 11, Volume I show  the  effects of towing a wedge 
block  and a 120-deg  wedge at angle-of-attack, a ,  values.  These  data  show 
that  the  downstream  surface  produces a more  oblique  wave  than  the  up- 
s t ream  surface as long as the  wave  remains  attached.  These  results  are 
consistent  with oblique  shock  theory since the  effective  deflection  angle  on 
the  upstream  side is less  than  that  on  the  downstream  side. Data for  the 
120-deg  wedge, f o r  which  the  hydraulic  jump is detached,  show  that  the 
bow  wave  standoff parameter, S/D, decreases  with  increasing CY €or 
a =- 5 deg. This  is  attributed to a decrease in the  effective  frontal  size 
of the  model. 

Comparison of Hydraulic  Jump  and  Theoretical  Gas Shock Results 

Theoretical  gas and  tow  channel  attached  two-dimensional bow  wave re -  
sults a r e  shown  in  Figures 13 and 14. It -is apparent  from  these  figures 
that  the  hydraulic  jump  conforms  reasonably  well  with  theory  for a 
y = 2 gas.  The  best  agreement is achieved  for  the two cases  where the 
deflection  angle, 6 ,  is 5 deg. It also  can  be  observed  for  these  cases  that 
the  theory is nearly  independent of y.  At larger  deflection  angles,  some 
curvature is indicated  by  the  data  points;  although,  near  the  apex,  the  tow 
channel  data  agrees  well  with  the y = 2 theory. "The indicated  curvature 
of the  data is consistent  with  real-gas  results as the  wave would be  ex- 
pected  eventually to become a Mach  line. 

A comparison is made  in.Section.IV of Volume I between  detached  hydraulic 
jump  data  from  the tow  channel  and  theoretical  shock  shape  and  location 
results  for  two-d,imensional  gases (air and a y = 2 gas).  The  results  in- 
dicate  that  the  hydraulic jumps  do not correspond to either  the air o r  the 
y = 2 gas  theoretical  results  particularly  in standoff distance. Good 
agreement  between  modified  hydraulic  jump  data  and  axisymmetric  shock 
shapes  was found to exist  for  limited but diverse body geometries. 

STEREO DATA 

Representative  results  obtained  using  the  stereophotogrammetric  equip- 
ment are presented in Figures  15, 16,  and 17 in  the form of contour maps 
for  the  bodies  indicated.  The  numbers  represent  the  water  depths  obtained 
from a calibrated  gage and  indicate  the  relative  height of the  tracing  table. 
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Oblique  Shock  Theory at Mach  (Froude)  Number of 2 
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H 
Figure 15 - Stereo  Contour M a p  at Fr, = 2 . 2  (Wedge Block  Forebody  and 

Reversed Half Cylinder  Trailing Body) 
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E 'igure 16 - Stereo  Contour Map at Fr, = 2 . 2  (120-Deg Wedge Forebody and 
Reversed. Half Cylinder Trailing Body) 

36 



L 3 
Figure 17 - Stereo  Contour  Map at Fr, = 2.2 (Blunted Wedge Block-Flare 

Forebody  and  Reversed Half Cylinder  Trailing  Body) 
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Each  integer  unit  in  the  numbers  represents a depth of 0 .005  in. , although 
a zero  reading on the  gage  does  not  correspond to zero  water depth.  To 
obtain  the  reading  corresponding to a zero  depth, a gage  block  with a 
known height of 0.5 in. (shown in each figure) w a s  used. Thus ,  the zero 
depth  reading  can be obtained  and,  since  each  integer  unit  represents a 
water  depth of 0. 005 in. , the  actual  water  depths  can  be found. 

The  use of this  type of da.ta  to  predict  wake  Froude  number  profiles  and 
the  results of these  predictions  are  presented  in  Volume I. 

These  contour  maps are obtained  in  full-scale  although  they  are  reduced 
in Figures 15, 16 ,  and 17 for report  purposes.  Hence, this method  also 
provides  an  accurate  way of obtaining  any  type of data  that  can  be  obtained 
with  the  sequence-still  technique.  The  stereo  method,  however,  is  com- 
paratively less economical and quick  and  requires  special  reduction  equip- 
ment. 
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SECTION VI - CONCLUSIONS 

The  tow channel is a useful  instrument  in  the  qualitative  study of two-dimen- 
sional gas  flow patterns  and  trends  and,  under  some  conditions,  can  be  used 
to predict  quantitatively  two-dimensional  gas  results.  Still  photographic  tech- 
niques  are  particularly  suitable  for  obtaining  data  trends  in  water  resulting 
from  changes  in  independent,parameters  suchas  free-stream  Froude  number 
(analogous to Mach  number in  a gas)  and  body  geometry.  These  techniques 
provide a means of obtaining  such  information  in a comparatively fast and 
economical  manner. The stereo  photographic  technique is more  time-con- 
suming  than still methods  and  requires  special  reduction  equipment.  In  addi- 
tion to providing a means of obtaining  the  same  type  data,  however, it can 
also  be  used to obtain  water  depth  values  in  the  free-stream,  inviscid flow, 
and  wake  regions.  Consequently,  the  stereo  method  can  be  applied to the  quan- 
titative  study of compressible  gas  flows. 

I 

I 

39 





APPENDIX  A - PRINCIPLES O F  THE GAS-HYDRAULIC ANALOGY 

1. THEORY 

The following is a condensation of the  derivati  n of the  gas  -hydraulic 
analogy as given by Preiswerkl  and  others. 2 -8 
Consider  the flow of an  incompressible  fluid  through  an  elementary  vol- 
ume of variable  height (see Figure 18). If there is no flow variation  in 
the  vertical  direction,  the  equation of continuity  gives 

ud dy+vd dx = u  +-dx  d +&dx   dy  + v +- dy d +-dy dx. ( E ) (  ax ) ( ;; ) (  ;: ) 
This equation  reduces to 

For  a two-dimensional  compressible  gas flow,  the  equation of continuity 
gives 

ud 

X 

/ / / 

I I 

. 
Figure 18 -. Flow of Incompressible  Fluid 
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p u  dy t p v  dx  = 

I This  equation  reduces to 

Comparing  Equations ( 9 ) and ( lo ) ,  it-is  apparent  that  the  water  depth and 
gas  density  are  completely  analogous.  Hence,  expressed  nondimension - 
ally  as the  ratio of static-to-stagnation  conditions,  the  following  results 
a r e  obtained: 

In the  energy  equation,  at  any point in the  fluid  flow  the sum of the  poten- 
t ial  and kinetic  energy  must  equal  the  sum at any  other point. For  incom- ~ 

Dressible  water  flow.  where it is assumed  that  vertical  accelerations  are L ~ -  ~~ - 

negligible  compared wi 

and 

V = 2gdo. max 

Thus,  the  velocity  ratio  is  given by 

o r  

for  water. 

For  a perfect  gas,  the  energy  equation  reduces to 

V2 = 2gcp(To - T) 

Therefore, 
2 

Vmax = 2gcpTo Y 
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where 

h = gcpT, 

I The  velocity  ratio  then is given  by 

l o r  

for a gas. 

T V 2 
" 

TO 

- 1 -  - 
(vmax ) 

Comparing  Equations  (13)  and  (15),  it is apparent  that the water  dep& 
ratio is equivalent  to  the  gas  temperature  ratio - that is , 

d T - = - .  
TO 

For  an  isentropic  flow, the static-to-stagnation  density  ratio  can  be ex- 
pressed as a function of the  static-to-stagnation  temperature  ratio - 
that  is , 

(gas  enthalpy). 

Substituting  water  depth ratios for  the  analogous  depth  and  temperature 
ratios  gives 

, 

d 

The  only  value of y for  which  this  equation  holds  is y = 2. Thus, a flow 
of water is analogous  to a gas  only  when y = 2 .  

For  an  isentropic  gas flow,  the static-to-total  pressure  ratio  can  be  ex- 
pressed  as  a function of the static-to-total  density  ratio by 

I 
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Thus,  for the  conditions  specified,  it  has now been  shown  that  the  water 
depth  is  analogous  to  the  density,  square  root of the pressure,  and  the 
temperature of a two-dimensional  compressible  gas. 

For  an  irrotational  flow, the differential  form of the  potential  function 
for a water flow having a free  surface  can  be  derived.  This  equation 
then  can be compared  with  the  corresponding  gas  equation  to show that 
a water  velocity  value of i g d i s  analogous  to  the  sonic  velocity, a ,   in  a 
compressible  gas.  This  is  accomplished  as  follows: 

Equation  (12)  can be rewritten  as 

Taking  the  partial  derivatives  with  respect  to x and y, there  results 

and 

Substituting  these two relationships  into  the  expanded  form of Equation 
(9) gives 

For  an  irrotational  flow, 

Therefore a potential  function, p/, can be defined so that 

and 

& = v .  
3 Y  
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Substituting  these  values  into  Equation  (23)  gives 

2. 

. 

The  corresponding  gas  relationship  is  (from  Reference 2) 

Comparison of Equations ( 2 6 )  and (27) shows  that  they  are  identical  when 

2 a = g d .  (28) 

For  shallow  water,  it  can  be  shown  (see  Item 2 below)  that  the  surface 
wave  propagation  velocity,  c,  in  water is given  to a good approximation 
by 

c = w. 
The  ratio of the  local  velocity  in  water  to  the  surface  wave  propagation 
velocity  defines  the  Froude  number - that is 

It  can  be  seen  that  this  parameter  corresponds to the  Mach  number, M, 
in a compressible  gas. 

For  values of Fr less  than  one,  the  water flow is said to be "streaming. I' 

If Fr is greater  than  one,  the  water is said  to be "shooting. '' In the 
latter  case,  under  certain  conditions, a strong  decrease  in  velocity  ac- 
companied  by  a  rapid  rise  in  depth  may  occur  within a short  distance. 
An unsteady  motion of this  type  is  called a hydraulic  jump.  Hydraulic 
jumps  are  geometrically similar to  shock  waves  in a gas. 

TOW CHANNEL WATER DEPTH 

It is  possible to select  a water  depth  for  which  the  surface  wave  propa- 
gation  velocity, c ,  is closely  approximated by the  velocity  value 
Because  this  value  corresponds to the  sonic  velocity  in a compressible 
gas,  the  proper  water  depth  is of considerable  importance. In Refer- 
ence 3, i t  is shown that  the  propagation  velocity of a surface  wave is 
actually  given by 
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where 

u = surface  tension 

P = fluid  density 

d = water  depth 

h = wavelength 

For  very  large  values of d,  such  as  might  exist  in  the  ocean, 

2nd 
x " 0 0  

and 

tanh- - 1 . 2nd 
x 

For  this  condition,  then,  the  value of- c  becomes 

From  this  equation,  it  can  be  seen  that  the  propagation  velocity is de- 
pendent upon the  wavelength, a condition  which  has  no  counterpart  in  a 
compressible  gas. 

Where  d is small, 

Therefore, 

or 

In this  case, if d -0, then  the  second term  in the parenthetical  expres- 
sion becomes  predominant  for small Xvalues. 

Qualitatively,  then,  the  water depth, d, is  restricted  to  some  range  that 
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l is neither  too  deep  nor  too  close to zero.  Crossley  and  Harleman9  have 
suggested  that  depths  from 1/+  in.  to  1-1/2  in. are  suitable  when  using a 
water flow  channel.  Laitone,  however,  found  experimentally  that,  with 
water  depths  greater  than  approximately  1/4 in. i n  a tow channel, the 
wave  propagation  velocity  began  to  lose all physical  significance,  and no 
given  waveform  could  be  propagated  without a continuous  change i n  shape. I 
At a water  depth of about 0.2 in.,  Laitone  showed  that c E indepe 
dent of X for allh 2 1 in.  This  also  can be shown  graphically by  plotting I 
Equation (33). Figure 19 shows  the  results,  which  indicate  that at a depth 
of about 0.2 in. 

c X -= constant 

f o r  allX 2 1. Waves corresponding to A values less than  this are capil- I 
lary  ripples,  and  their  effect is almost  negligible  on  the  formation of 
hydraulic  jumps. 

In a purely  theoretical  approach, Gupta6 later showed  the  optimum  water 
depth to be 0.19 in. 
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Figure 19 - Surface Wave Propagation  Velocity  as  a  Function of Wavelength 
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APPENDIX B 

REPRESENTATIVE TOW CHANNEL STILL PHOTOGRAPHS 

Presented in Figures 20 through 39 are  typical  sequence still photographs  ob- 
tained  during  the tow channel  test  program.  Figures 20 through 29 are photo- 
graphs of single body tests  using  different  representative  shapes.  Figures 
30 and  31  show a 120 deg  wedge  with a trailing 10 deg  wedge  (analytical  wedge, 
see  Section IV). Finally,  Figure 32  through 39 are photographs of either a 
wedge-block  or a 120 deg  wedge  with a trailing  reversed half cylinder (ana- 
lytical  blunt body, see  Section IV). In Figures 34, 35, 38, and  39,  the fore- 
body is at an  angle-of-attack of 5  degrees. 
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Figure 21 - Wedge-Block (Frm = 2.5) 
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Figure 2 2  - 80-Deg  Wedge (Frm = 2.0) 

Figure 2 3  - 80-Deg Wedge (Frm = 2.5) 
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Figure  24 - Circular  Cylinder  (Frm = 2.0) 

. 

Figure 25 - Circular  Cylinder  (Frm = 2.5) 
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Figure 26 - Half Cylinder-Block-Flare (Frm = 2.0) 

Figure 27 - Half Cylinder-Block-Flare (Fr = 2.5) 
03 
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Figure 28 - Blunted  Wedge-Block-Flare (Frm = 2.0)  

Figure 29  - Blunted  Wedge-Block-Flare (Frm = 2.5) 
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Figure 30 - 120-Deg  Wedge with  Trailing 10-Deg 
Wedge (Frm = 2.0,   x/D = 2. 0) 

Figure 31 - 120-Deg  Wedge with  Trailing 10-Deg 
Wedge (Frm = 2. 5, x/D = 2 .0 )  
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Figure 3 2  - Wedge-Block  with  Trailing  Reversed 
Half. Cylinder (Frm = 2. 0, x/D = 9 )  

Figure 33 - Wedge-Block  with  Trailing  Reversed 
Half Cylinder (Frm = 2 .  5, x/D = 9 )  
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Figure 34 - Wedge-Block at Q = 5 Deg with 
Trailing  Reversed Half Cylinder 
(Frm = 2 . 0 ,  x/D = 9 )  

Figure 35 - Wedge-Block at CY = 5 Deg with 
Trailing  Reversed Half Cylinder 
(Frm = 2. 5, x/D = 9 )  

57 



Figure 36 - 120-Deg Wedge with  Trailing  Reversed 
Half  Cylinder (Frm = 2. 0, x/D = 8 .  5) 

Figure 37 - 120-Deg Wedge with  Trailing  Reversed 
Half Cylinder (Frm = 2.  5, x/D = 8.  5) 

58 



I 

Q 

F i g u r e  38 - 120-Deg  Wedge at cy = 5 Deg with 
Tra i l i ng   Reve r sed   Ha l f   Cy l inde r  
( F r m  = 2.0 ,   x /D = 8. 5) 

F i g u r e  39 - 120-Deg  Wedge at CY = 5 Deg with 
Tra i l i ng   Reve r sed   Ha l f   Cy l inde r  
(Frm = 2. 5, x/D = 8. 5) 
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LIST OF SYMBOLS 

sonic  velocity 

surface  wave  propagation  velocity 

heat  capacity at constant  pressure 

body  diameter,  inches 

water  depth,  inches 

Froude  number 

gravitational  acceleration 

gas  enthalpy 

body  length,  inches 

length 

Mach  number 

pressure 

body radius,  inches; gas constant 

radius,  inches;  transverse  coordinate 

detached bow  wave  standoff distance,  inches 

temperature 

axial  velocity  component 

velocity 

lateral  or  transverse  velocity  component 

axial  coordinate 

wake  neck  location  measure  from  forebody  base,  inches 

lateral  coordinate 

angle of attack,  degrees 

specific  heat  ratio 
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6 deflection  angle 

E trailing  wave  divergence half angle 

e bow-wave  angle,  degrees 

x wave length 

P density 

0 water  surface  tension 

b velocity  potential  function 

Subscripts: 

b block 

f flare 

n nose 

0 stagnation  condition 

S shoulder 

x, y partial ffere  tiation  with  respect  to x or  y (e. g., = a &/ax, 
by, = a b/a Y 9 2  

1 reference  conditions 

2 post  wave  conditions 

00 free-stream  conditions 
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